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ABSTRACT 
At now, the majority of approaches rely on manual techniques for annotating cell types subse
quent to clustering the data obtained from single-cell RNA sequencing (scRNA-seq). These 
approaches require a significant amount of physical exertion and depend substantially on the 
user’s skill, perhaps resulting in uneven outcomes and inconsistency in treatment. In this paper, 
we provide a computer-assisted interpretation of every single cell of a tissue sample, along with 
an in-depth exploration of an individual cell’s molecular, phenotypic and functional attributes. 
The paper will also perform k-means clustering followed by silhouette validation based on simi
lar phenotype and functional attributes, and also, cell type annotation is performed, where we 
match a cell’s gene profile against some known database by applying certain statistical condi
tions. Finally, all the genes are mapped spatially on the tissue sample. This paper is an aid to 
medicine to know which cells are expressed/not expressed in a tissue sample and their spatial 
location on the tissue sample.
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1. Introduction

The genomic method of RNA sequencing, also known 
as RNA-seq, is beneficial for analyzing cellular 
responses. This method enables the detection and 
quantitative analysis of messenger RNA molecules 
present in a biological sample. RNA-seq has become a 
major driver of medical innovation and discovery in 
recent years. Because of the practical considerations 
involved, the method is often applied to samples that 
contain thousands to millions of cells. This has pre
vented a direct evaluation of the cell, the basic build
ing block of biology. Since the first one was published 
in 2009, numerous single-cell RNA-sequencing 
(scRNA-seq) investigations have been conducted, the 
majority by specialized labs with expertise in single- 
cell genomics, bioinformatics, and computation.

Single-cell Spatial Transcriptomics [single-cell RNA 
sequencing] is a compound of three keywords 
Spatial1, Transcript2, and omics3 (Ståhl et al. 2016; 
Maynard et al. 2021; Williams et al. 2022).

First, ‘omics’ refers to the collective characteriza
tion and quantification of pools of biological mole
cules. These pools of molecules collectively translate 
into an organism’s structure, functions, and dynamics.

The second is 2Transcript, meaning an RNA 
strand is produced when a gene is transcribed, i.e. 
duplicating a gene’s DNA sequence to synthesize an 
RNA molecule (Cao et al. 2020). These transcriptions 
follow a series of procedure (Lacar et al. 2016; 
Svensson et al. 2018).

Step 1: The initiation phase of transcription 
entails using RNA polymerase, the principal enzyme 
responsible for synthesizing a complementary RNA 
strand from a single-stranded DNA template. The 
RNA polymerase interacts with a specific region of 
the DNA molecule that is close to the initiation site 
of a gene. In bacteria, it is seen that each gene pos
sesses its own promoter, which is accompanied by a 
collection of co-transcribed genes. Following the pro
cess of binding, RNA polymerase effectively separates 
the DNA strands, resulting in the formation of indi
vidual single strands. This action establishes the 
necessary template for the subsequent transcription 
process.

Step 2: The process of elongation in RNA poly
merase involves the utilization of a single DNA 
strand, referred to as the template strand, for the pur
pose of serving as a template. The RNA transcript 
employs the nucleotide uracil (U) instead of thymine 
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(T) yet includes the same information as the non- 
template (coding) strand of DNA.

Step 3: Terminator sequences indicate the comple
tion of the RNA transcript. They induce the release of 
the transcript from the RNA polymerase after its 
transcription.

Not all genes exhibit continuous transcription. In 
contrast, the regulation of gene transcription occurs 
separately for each gene or, in the case of bacteria, for 
small clusters of related genes. Cells have precise con
trol over transcription, selectively activating only 
those genes whose resulting products are necessary 
during a particular moment.

Moreover, finally, 3Spatial means assigning RNA 
to a location onto a histopathological sample. 
Identifying the location is desirable to know where 
some stuff is happening, and doctors can devise the 
desired therapy only for specific cells, not for entire 
regions (Chen et al. 2020; Chen et al., 2015; Lee et al. 
2021; Petukhov 2020). Conclusively, the analysis of all 
of the RNA molecules present inside a cell is referred 
to as the transcriptome.

Cell describes the molecular, phenotypic, or func
tional attributes of an individual. Cell type annotation 
is the process of assigning or identifying the specific 
cell types or identities present in a biological sample 
based on gene expression patterns (Armingol et al. 
2021).

DNA sequencing is the same in almost all cells of 
a given type of organism. These sequences generally 
consist of different cells within that organism. The 
DNA sequence of an organism’s genome contains the 
instructions necessary for the development, function
ing and maintenance of that organism. Every cell in a 
mouse or human body contains the same set of genes 
with the same DNA sequence. However, a cell may 
have specific (combination of) genes that are either 
expressed (turn-on) or not expressed (turn-off), mak
ing them perform their specific function expression 
or gene regulation (Payne et al. 2021). Different cell 
type has specific gene expression profile. Cellular 
diversity and cell-specific function are best assessed 
not at the DNA level but at the protein level/gene 
level (Tang et al. 2009; Sasagawa et al. 2013). So, these 
DNA are transcribed into RNA for further gene 
expression analysis and to identify/locate the region 
where genes are undesirably triggered (Chen et al., 
2015).

Many studies of the transcriptome only concentrate 
on messenger (m)RNA molecules, which are respon
sible for reflecting the genes that are being actively 
expressed (as protein structure) in a cell or tissue at a 

specific time or in a specific environment (Tang et al. 
2009). RNA can provide insight into whether or not 
genes are expressed in a given cell. RNA molecules 
are synthesized from a DNA template. Analyzing 
RNA in a cell can provide information on which 
genes are actively being transcribed and, hence, 
expressed to perform the intended task. RNA 
sequencing allows researchers to determine the iden
tity and abundance of different RNA molecules, 
including messenger-RNA (mRNA) transcript. By 
comparing the RNA-Seq data across different samples 
or conditions, researchers can identify which genes 
are unregulated (turned on) or downregulated (turned 
off) under specific circumstances (Femino et al. 1998; 
Tang et al. 2009; Ke et al. 2013; Haque et al. 2017; 
Lopez et al. 2018; Xu et al. 2023).

A thorough comprehension of how particular cells 
utilize their mRNA and proteins in various tissues of 
the human body can yield novel approaches for pre
venting or treating infections, malignancies, neuro
logical or metabolic diseases, and several other 
ailments.

This paper uses visium data by 10� genomics, 
which allows for the simultaneous profiling of gene 
expression and spatial information within intact tissue 
sections (Merritt et al. 2020). By preserving the spatial 
context of gene expression, Visium enables studying 
the spatial organization of cells and molecular interac
tions within complex tissues. This paper calculates 
what the various genes are expressed in a specific cell. 
These identified genes help us to know the cell type 
and interpret the genes, followed by visualization of a 
gene at which part of the sample it is activated. This 
paper also counts the optimal number of clusters 
based on elbow methods and the validity of the num
ber of clusters calculated by silhouette clustering. A 
cluster consisting of similar kinds of cells, these cells 
are annotated with the help of two publicly available 
datasets. This cell annotation procedure is done based 
on the top 20 genes identified in a cell. Later, these 
annotated cells are transferred spatially to tissue sam
ples. Based on cell type, spatial projection of the dis
ease can be predicted.

2. Proposed methodology

The proposed methodology shown in Figure 1 follows 
a series of procedures starting from reading the vis
ium tissue data at 10� resolution with spots coloured 
by UMI count. This data contains 2987 spots/cells; 
each cell has 31053 genes (Kleshchevnikov et al. 
2022). In the next step, the highest expressed genes 
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are calculated in each cell. These highest expressed 
genes are visualized on top of the tissue data by gen
erating a spatial plot of cells using the gene expression 
levels of the most abundant gene. In the third step, 
highly variable genes and markers are identified, and 
their statistics (log-fold-changes, z-scores, pvalue) are 
calculated. Based on these statistical values, the opti
mal number of clusters is identified in the fourth 
step. The k-means clustering is used to cluster similar 
kinds of cells into specific clusters. The Silhouette val
idation technique is used to validate the number of 
clusters. In the next step, the top 10 genes are identi
fied per cluster. These top 10 genes are matched with 
two public data sets (cell marker, & cancer SEA) (Cao 
et al. 2020) to annotate cells in the cluster, and finally, 
these annotated cells are mapped based on spatial 
location on the tissue sample.

2.1. Data collection

This paper uses a 10� single nucleus RNA- 
Sequencing (scRNA-Seq) and visium spatial transcrip
tomic data generated from adjacent mouse brain 
tissue sections (Kleshchevnikov et al. 2022). These 
public available data sets [ST8059048], [ST8059049], 
[ST8059050], [ST8059051], and [ST8059052] freely 
accessible at https://cell2location.cog.sanger.ac.uk/ 
tutorial/mouse_brain_visium_wo_cloupe_data.zip.

This visium data from genome 10� follows a series 
of procedures. In the first step, a visium slide contain
ing a matrix of capture areas is prepared. The slide 
has a unique barcode pattern assigned to each capture 
area. Then, in the second step, tissue of interest, such 
as a section from a biopsy or a tissue slide, is placed 
onto the visium slide, aligning it with the capture 
area. In the third step, the tissue on the visium slide 
is permeabilized to allow the capture of RNA 

molecules. RNA transcript from the tissue binds to 
capture areas while other cellular components are 
washed away. Later in the fourth step, reverse tran
scription is performed within each capture area to 
convert the captured RNA molecules into comple
mentary DNA (cDNA). This step allows for amplifi
cation and preservation of the original RNA 
information. Library generation is the fifth step. The 
cDNA molecules are amplified and prepared into 
sequencing libraries in this step. These libraries can 
be subjected to high-throughput sequencing gener
ation data that can be analyzed to determine the spa
tial gene expression patterns within the tissue sample. 
Finally, these libraries are subjected to high-through
put sequencing using next-generation sequencing. The 
Data ð2987� 31053Þ contains 2987 cells/spots, and 
each spot having 31053 number of genes.

2.2. Highest expressed gene calculation

This process calculates the percentage of counts 
attributed to each gene in a cell for each gene. The 
boxplots represent the n_top genes with the highest 
mean fraction across all cells. Figure 2 shows mito
chondrial genes (mt-Co3, mt-Co1, mt-Atp6, mt-Co2), 
Protine coding gene like Fth1, and Ttr gene, which 
responsible for transthyretin protine instruction are 
what we anticipate to see. A few spike-in transcripts 
might also exist in this region, but if all of the spike- 
ins are among the top 25, it might have added too 
much spike-in RNA. A large number of anticipated 
or pseudo-genes may point to alignment issues.

All the genes can be visualized on the tissue sam
ple. For example, in the next section, we have shown 
3 genes and their spatial location on the tissue 
sample.

Figure 1. Graphical abstract of the proposed system.
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2.3. Spatial visualization of top genes

Among the top 25 genes identified in the previous 
step, three chosen genes (mt-Co3, Ttr, and Fth1) are 
spatially located in Figure 3. As the result shows, mt- 
Co3 is the most prominent gene. This gene is active 
in most of the cells. While Fth1 and Ttr genes are 
triggered in some of the specific cells and spatially 
located in Figure 3. This spatial location can help 
neurologists access and correlate the situation with 
their wisdom.

Identifying the variability among genes is also 
essential to exhibit diverse expression.

2.4. Identify the highly variable gene

An essential stage in processing single-cell RNA 
sequencing (scRNA-seq) data is the identification of 
highly variable genes shown in Figure 4. It aids in 
identifying genes that show notable expression vari
ation between cells, which may be a sign of biological 

heterogeneity, a marker for a particular cell type, or a 
gene involved in important regulatory functions.

Identification of the cell type: Highly variable genes 
frequently exhibit diverse expression patterns in vari
ous cell types. We can discover gene signatures that 
distinguish particular cell types and utilize them as 
markers for cell type identification by identifying 
these genes.

Although scRNA-seq datasets can contain thou
sands of genes, not all significantly contribute to the 
underlying biological variance. By locating highly 
variable genes, we can narrow the attention to the 
most useful genes, decreasing the dataset’s complexity 
and enhancing subsequent analysis like grouping and 
visualization.

Differential expression analysis shows that highly 
variable genes are more likely to show notable varia
tions in expression under various settings or in differ
ent cell states. We can prioritize these genes for 
additional research and identify the genes responsible 
for biological variation. Highly variable genes are fre
quently linked to important biological functions, such 
as signalling networks, cell cycle regulation, and 
important transcription factors. Finding these genes 
can illuminate the biological underpinnings and regu
latory systems underlying cellular heterogeneity.

3. Genes data and their statistics

Later, all the genes are quantified based on quantita
tive metrics (Log fold changes, z − score, and Pvalues). 
Table 1 shows a sub-sample of 10 genes among the 
31053 genes. This quantification can help access the 
different cell types and their nature in the tissue 
sample.

Figure 3. Spatial distribution 3-genes from top 25 expressed genes over sample tissue.

Figure 2. Top-25 expressed genes.
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On this data preprocessing, differential analysis is 
done. Moreover, using PCA, k-means clustering tech
niques, with silhouette coefficient analysis applied to 
the reduced dataset.

3.1. Find an optimal number of clusters

The Elbow method is a frequent heuristic in mathem
atical optimization used to find a point at which the 
decreasing returns are no longer worth the additional 
cost. This point is determined by selecting a cutoff 
point (Na et al. 2010; Jin and Han 2011).

Based on the data gathered, the first step is finding 
an optimal number of clusters to represent data into 
different cell types. That will eventually help to map 
cell type in cluster. Figure 5 shows a graph between 
the with-in-cluster sum of squares vs. the number of 
clusters. With this graph, it can be inferred that eight 
can be an optimal number, considering that k-means 
clustering is discussed in the next section.

3.2. Deploy k-mean clustering algorithm

Based on the number of clusters identified in the pre
vious step, it is used to perform k-means clustering 

on the data. k-means divide the data into eight differ
ent clusters with their silhouette coefficient value. 
Clustering is done based on similar kinds of gene 
scores. That means each cluster has similar cells that 
have the same gene type (Na et al. 2010; Jin and Han 
2011; Yu et al. 2021).

When the clustering is performed on the basic 2 to 
10 clusters, the silhouette coefficient varies from 
0.3729 to 0.7042. Silhouette score is maximized when 
the number of cluster values is 8 (silhouette coeffi
cient ¼ 0.7717) (Wang and Xu 2019) and decreases 
when the number of clusters exceeds 8. The visualiza
tion of cluster data and silhouette plots for various 
Clusters is displayed in Figure 6.

3.3. Silhouette validation technique to validate 
the number of clusters

The silhouette value is a metric that quantifies the 
similarity of an object to other clusters, specifically in 
terms of its resemblance to its own cluster relative to 

Table 1. A small sample of 10 genes among 31053 genes: 
Statistical data.

Name of Gene Log fold changes z − score Pvalues
0 1110008P14Rik 1.8983871 41.56318 6.24E-193
1 3110035E14Rik 2.8234143 41.05083 4.46E-156
2 Diras2 1.9230663 34.813873 9.21E-139
3 Slc17a7 1.8118644 33.838364 3.99E-179
4 Nrgn 2.111198 33.586037 1.69E-184
5 Ttc9b 2.008768 33.03382 1.05E-127
6 Egr1 2.0530055 33.009403 2.76E-147
7 Hs3st2 3.3050497 31.111254 1.72E-100
8 Prkcb 1.4074348 30.980652 1.44E-147
9 Ccl27a 1.7982706 30.780811 7.96E-115
10 Ier5 2.2711916 28.888874 1.30E-102

Figure 5. The process of identifying the optimal number of 
clusters.

Figure 4. Distribution of highly variable genes.
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its dissimilarity from other clusters (Wang and Xu 
2019; Shahapure and Nicholas 2020).

The silhouette coefficient ranges from −1 to þ1, 
where a higher number suggests a strong correspond
ence between the object and its assigned cluster. At 
the same time, a lower value indicates a weak corres
pondence with nearby clusters. The selected clustering 
structure is deemed appropriate when a significant 
proportion of the objects has a considerable value. If 
a considerable proportion of data points exhibit nega
tive or low values, the clustering arrangement may 
suffer from an excessive or inadequate number of 
clusters (Wang and Xu 2019).

This paper is validating from a number of Cluster 
(K) 2 to 10 using k-means clustering, and for every K 

cluster, the silhouette score is calculated and displayed 
in Figure 7.

These values are calculated by considering Di is the 
data point belonging to cluster CI: Then, the similar
ity coefficient for the data point Di e CI is expressed 
as Avgwcss (within-cluster sum of square distance)

Avgwcss Dið Þ ¼
1

CIj j − 1

X

jeCI , i6¼j
distðDi, DjÞ (1) 

Let Avgwcss Dið Þ be the distance between the data 
point Di with all other data points in the same 
Cluster, Euclidian distance is the measured distance 
between data points ðDi, DjÞ, and CIj j will keep track 

Figure 6. Experimental results considering different numbers of clusters along with the silhouette coefficient values.
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of the number of points in the cluster CI : Eq. (1) pro
vides how well Di is clustered.

If we talk about how the data point Di is separated 
from other cluster then dissimilarity of data point Di 
to some other cluster CJ as the mean of the distance 
from Di to all other points in CJ :

Avgdisimilarity ¼ min
J 6¼I

:
1
jCJ j

X

jeCj

distðDi, DjÞ (2) 

For each data point DieCI , Avgdisimilarity to be the 
smallest mean distance of I to all points in any other 
cluster.

With the help of these formulations, the silhouette 
coefficient can be estimated for the data point Di

Sil Dið Þ ¼
Avgwcss Dið Þ − Avgdisimilarity

maxfAvgwcss Dið Þ − Avgdisimilarityg
, if jCI j > 1

Sil Dið Þ ¼ 0, if jCIj ¼ 1
(3) 

After formulating all 8 clusters, the next step is to 
annotate them with cell type to identify the spatial 

location of cells and their corresponding top-10 
genes.

3.4. Identify the top genes per cluster and 
annotate cell type in each cluster

Based on gene scores, eight different clusters are identified 
later, and these clusters are annotated as cell types. Table 
2 shows cluster numbers along with their Cell name, and 
Top-10 represented genes. The names of 8 cells mapped 
with top-10 genes are Brush cell, Cardiomyocyte, Ciliated 
cell, Mesenchymal cell, Neuroendocrine cell, Stem cell, 
T cell, and Type I spiral ganglion neuron. These cells 
are further mapped with their spatial location in 
Figure 8. This spatial location helps the clinical expert 
to verify the relationship among expressed cells/unex
pressed cells based on spatial location and can propose 
a future course of treatment and planning.

Table 3 shows the number of cells per cluster. This 
table provides a glimpse into the cluster along with 
the number of cells per cluster with cell type.

Figure 7. Number of clusters along with silhouette coefficient score.

Table 2. Top-10 genes annotated with cell types and represented cluster.
Cluster 1 Top-10 Genes Cluster 2 Top-10 Genes Cluster 3 Top-10 Genes Cluster 4 Top-10 Genes

Cell Name: Brush 
cell (Tuft cell)

Prkcd Cell Name: 
Cardiomyocyte

Camk2n1 Cell Name: 
Ciliated cell

1110008P14Rik Cell Name: 
Mesenchymal 
stem cell

Tcf7l2
Adarb1 Nrgn Mobp Slc17a6
Tcf7l2 Atp1a1 Fth1 Tmsb10
Ccdc136 Egr1 Cryab Cbln1
Cnih2 Mef2c Cldn11 Cbln4
Zbtb18 Ppp3ca Ly6h Gap43
Wipf3 Atp2b2 Nptxr Nap1l5
Hpca Camk2a Hpcal4 Sparc
Psd Lingo1 Nnat Nxph1
Chn1 Lamp5 Id3 Zcchc12

Cluster 5 Top-10 Genes Cluster 6 Top-10 Genes Cluster 7 Top-10 Genes Cluster 8 Top-10 Genes

Cell Name: 
Neuroendocrine 
cell

Sparc Cell Name: Stem 
cell

Cartpt Cell Name: T cell Ppp1r1b Cell Name: Type 
I spiral 
ganglion 
neuron

Pvalb
Nap1l5 Gpx3 Penk Gad1
Slc6a11 Scg2 Tmem158 Gad2
Peg3 Nrsn2 Gpr88 AI593442
Resp18 Sparc Meis2 Kif5a
Nptxr Nap1l5 Gad2 Slc32a1
Syn2 Foxb1 Adcy5 Ramp3
Snca Podxl2 Arpp21 Cplx1
Nov Ndn Gng7 Six3
Ddn Peg3 Slc32a1 Ubash3b
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Figure 8 shows the spatial mapping of each identi
fied cell on the tissue sample. In assigning to the cell 
type of each cluster, for example, we have eight differ
ent clusters, each of which comes with a gene profile. 
These profiles match against two publically available 
datasets (Cell Marker (Zhang et al. 2019), Cancer SEA 
(Yuan et al. 2019)) to call this type of cell. List of more 
publically available data set is projected in Table 4.

For cell type annotation, we match the pattern 
against the database by applying certain statistical 
conditions.

In order to benchmark the cell annotation process 
against the other cell-type annotation methods, we 
utilized five scRNA-seq datasets from public domain 
and re-analysed these using automated system. 
Five datasets, Mouse Lung (GSE63269) Mouse 
Brain (ST8059048), (ST8059049), (ST8059050) and 
(ST8059052). To make the compare unbiased, we 
annotate cell type with the help of public data set 
available in the Table 4 and find that annotation per
formed with different dataset provide similar cells 
types for ST8059052 dataset of mouse brain.

3.5. Gene set Enrichment analysis (GSEA)

Gene Set Enrichment Analysis (GSEA) is a computa
tional approach utilised to assess the statistical 

significance of concordant differences between two 
biological states in relation to a pre-defined set of 
genes. Steps involved in this method to overcome the 
problem of Over Representation Analysis (ORA) meth
ods. Actually, the big difference (ORA and GSEA) is 
that in GESA the input is not a list of genes but a 
ranked gene.

Ranking basically means that the genes are ranked 
by some score so common way of ranking genes by 
level of differential expression like pvalue and log2
fold. The p_value records about the significance of 
changes while log2fold changes talk about the direc
tion and the strength of the change basically if the 
genes are operation up regulated or down regulated. 
So, combination of both give ranked of list of genes 
which orders them both not only by significance but 
also direction of genes. At the top of the list, we have 
most up regulated and significant genes and at the 
bottom of the list most down regulated significance 
genes. Ranking of genes is calculate by the Eq. (4);

Generanking ¼ Sign Fold Changesð Þ� − log10 Pvalueð Þ

(4) 

3.6. Pathway analysis ST8059052 mouse brain 
GeneSet mouse MSigBD collection

The Mouse Molecular Signatures Database (MSigDB) 
has a total of 16,090 gene sets, which are categorized 
into six primary collections along with other subcol
lections. M8 collection: cell type signature gene sets 
are mapped with ST8059052 dataset.

The gene sets encompassing cluster marker genes 
for cell types that have been found in single-cell 
sequencing investigations of mouse tissue. The pur
pose of these gene sets is to aid in the categorization 

Figure 8. The spatial location of each cell type over the tissue sample.

Table 3. Cluster-wise number of cells.
Cluster Number of Cells Cell Type

Cluster_1 3840 Brush Cell (Tuft cell)
Cluster_2 1960 Cardiomyocyte
Cluster_3 7834 Ciliated Cell
Cluster_4 40 Mesenchymal stem cell
Cluster_5 5890 Neuroendocrine cell
Cluster_6 22 Stem cell
Cluster_7 1260 T cell
Cluster_8 4989 Type I spiral ganglion neuron
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of cell types within datasets, particularly those derived 
from investigations involving the development of 
organoid models.

As figure shows mouse brains sample (ST8059052) 
shows a strong relation with Subculaneous_ 
adipose_tissue_mesenchymal (Figure 9E) beside 
others Aorta_fibroblast_of_cardiac (Figure 9A), 
and Diaphragm_mesenchymal (Figure 9B). On the 

other hand, we have also observed a slightly dip 
positive correlation with Heart_fibroblast_of_cardiac 
(Figure 9C), Mamary_gland_basal (Figure 9D), and 
Zhang_Uterus_C11_Smooth_Muscle (Figure 9F). 
Rest Mammrry_gland_macroph (Figure 9G), Senis_ 
brain_non_myeloid (Figure 9H), and mammry_ 
gland_endothelial (Figure 9I), are relatively shows 
lower side of correlation.

Table 4. Publically available dataset for annotating cell types.
References Public Dataset Dataset Type Species Location/parts

(Regev et al. 2017) HCA scRNAseq Human 33 multi-organs data
(Han et al. 2018) MCA scRNAseq mice 98 multi-organs dataset
(Schaum et al. 2018) Tabula Muris scRNAseq mice 20 multi-organs dataset and tissue sample
(Hodge et al. 2019) Allen Brain Atlas scRNAseq Both human and mice 69 neuronal cell types
(Zhang et al. 2019) CellMaker Genes marker Both human and mice 467 (human), 389 (mice)
(Franz�en et al. 2019) PanglaoDB Genes marker Human 155 cell types
(Yuan et al. 2019) CancerSEA Genes marker Human 14 cancer functional states

Figure 9. Gene set enrichment analysis of mouse brain sample correlated with GeneSet mouse MSigBD collection. Each image 
from [A–I] shows gene set enriched pathways of mouse brain sample associated gene with normalized enrichment score (NES), 
probabilistic values (p_value), and false discovery rate (FDR) inside each diagram.
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Single-cell Specificity Analysis (SSCA) is a library 
that allows for accurate cell type annotation by com
paring scRNA-Seq data to reference cell type profiles. 
SSCA calculates a specificity score for each cell type, 
measuring the likelihood of a cell belonging to a spe
cific type based on its gene expression profile. SSCA 
library includes a pre-built reference database for 
various organisms, enabling cell-type annotation in 
different biological contexts.

4. Discussion and conclusion

Currently, annotating cell types inside cell clusters 
resulting from unsupervised clustering for single-cell 
RNA sequencing (scRNA-seq) data is predominantly 
carried out manually. Due to the inherent constraints 
associated with the manual methodology, it is unfeas
ible to provide annotation results that exhibit high 
quality, reproducibility, and standardization across the 
expanding array of single-cell RNA sequencing data
sets. Identifying location is crucial for comprehending 
the ongoing events, as healthcare practitioners are 
limited to administering medication exclusively to 
specific cells rather than an entire region.

Therefore, this automation helps medical professio
nals measure the perceptual problems they encounter 
while diagnosing the intricate architecture of tissue 
samples. This analysis, based on k-means clustering, 
assists medicine in its interpretation and in-depth 
examination of the many cells in tissue samples. A 
comprehensive understanding of how individual cells 
in the many tissues of the human body use the 
mRNA and proteins they produce could lead to the 
development of new strategies that can be used to 
prevent or treat a wide variety of conditions, such as 
infections, malignancies, neurological or metabolic 
abnormalities, and a source of other diseases. These 
conditions include infections, malignancies, and 
neurological or metabolic abnormalities.

The main objective of this study is to discover the 
pathways and processes that exhibit a substantial 
association with the activity of the regulatory factor. 
The approach employed in this study involves the 
utilisation of a hypergeometric test to establish associ
ations between genes and their corresponding regula
tory regions. This enables the inference of proximal 
gene regulatory domains.
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